

fi

*

School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China Center for Brain and Cognitive Sciences, Peking University, Beijing 100871, China Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing 100871, China PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China

Department of Psychology, Arizona State University, Tempe, AZ 85287, United States

ARTICLE INFO	ABSTRACT
Article history:	
	fi fi
Keywords:	
	©

Introduction

fi

fi

Materials and methods

Participants

± .

Intertemporal choice (ITC) task

<

fi fi " fi fi

8

20

55

± .

SV = LL Amount/(1 + kD)

 fi fi fi fi

Procedure

Conventional tDCS

HD-tDCS

Behavioral data analysis

logit $P(chooseLL) = \beta_1 LL amount + \beta_0$

$logit(0.5) = \beta_1 indifference point + \beta_0$

 $\beta_1 \quad \beta_0 \qquad \text{fi}$ indifference point = $-\beta_0/\beta_1$

fi
$$\beta_1 \quad \beta_0$$
 ""
 $\beta_1 \quad \beta_0$ fi $\beta_1 \quad \beta_0$,
 $\beta_1 \quad \beta_0$ fi
 $N = \frac{A}{1+kD}$
 k fi A
 k fi A

 $SV_{ASAP} = g\left(D_{ASAP}\right) \frac{A}{1 + k_{ASAP}(D - D_{ASAP})}$

D_{ASAP} g D_{ASAP}

k fi "" $P(choose LL) = (1 + e^{-b(SV_{LL} - SV_{SS})})^{-1}$ SV_{SS} SV_{LL} b

Results Δ

Immediate context

Experiment 1.

+ - - +

fi $F = \eta^2 =$ p =, $F = \eta^2 = p =$ k

 $F = \eta^2 = p = 0$

Experiment 2A and 2B. + + k

 $\eta^2 = p = F = \eta^2 =$ p < post-hoc $F = \eta^2 =$

post-hoc fi F $\eta^2 =$ p =t = + Δ p = $\dot{\Delta}$ = t = p =Δ =

 $t = p = \dots$

k F $\eta^2 =$ p = 1Post-hoc t + k Δ k =+ Δ k p =t p == Δ k =t p == = k

· · · +

 $F = \eta^2 = p =$ $F = \eta^2 = p =$

 Δ .

_

p < .

Delayed context

fi

$$F = \eta^{2} \qquad p = F = \eta^{2} \qquad p = \eta^{2$$

p= p= p= \times f_1

p= , p= , p= , p= ,

Discussion

fi

. . • • • •

et al.,

.

Conclusion

Acknowledgment

Appendix A. Supporting information

References

- fi a construction of the second se
- H in the state of the state of

 $\mathbf{f}_{\mathbf{i}} = \mathbf{f}_{\mathbf{i}} + \mathbf{f}_{\mathbf{i}} +$

المراجع (ا المراجع (الم المراجع (ا

fi

and the second second

fi a construction de la construc

(a) A start and the start of the start of

 $- \frac{1}{10} = \frac{1}{10} + \frac{1}{10} = \frac{1}{10} + \frac{1}{10} = \frac{1}{10} = \frac{1}{10} + \frac{1}{10} = \frac{1}{10$